- Robson, R., Abrahams, B. F., Batten, S. R., Gable, R. W., Hoskins, B. F. & Liu, J. (1992). American Chemical Society Symposium Series, No. 499, Supramolecular Architectures, edited by T. Bein. Washington, DC: ACS.
- Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Smith, D. R. (1998). Coord. Chem. Rev. 172, 457-573.
- Spek, A. L. (1990). Acta Cryst. A46, C-34
- Stoe & Cie (1995a). X-RED. Data Reduction Program. Version 1.06. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1995b). IPDS. Imaging Plate Diffractometer System. Stoe & Cie, Darmstadt, Germany.
- Wijnands, P. E. M., Wood, J. S., Reedijk, J. & Maaskant, W. J. A. (1996). Inorg. Chem. 35, 1214–1222.
- Yuge, H. & Iwamoto, T. (1994). J. Chem. Soc. Dalton Trans. pp. 1237-1242.
- Yuge, H., Kim, C.-H., Iwamoto, T. & Kitazawa, T. (1997). Inorg. Chim. Acta, 257, 217–224.
- Yuge, H., Mamada, A., Asai, M., Nishikiori, S. & Iwamoto, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3195–3205.

Acta Cryst. (1999). C55, 1969-1970

Trierbium digallide trigermanide

RICHARD WELTER AND GERARD VENTURINI

Laboratoire de Chimie du Solide Minéral, UMR 7555, Université Henri Poincaré Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre les Nancy CEDEX, France. E-mail: richard.welter@lcsm.u-nancy.fr

(Received 10 June 1999; accepted 2 August 1999)

Abstract

The synthesis and single crystal structure of $Er_3Ga_2Ge_3$ (analysed as $Er_3Ga_{2.21}Ge_{2.79}$) are reported. $Er_3Ga_2Ge_3$ is isotypic with Pu_3Pd_5 .

Comment

The title compound, $Er_3Ga_2Ge_3$, is isotypic with Pu_3Pd_5 (Cromer, 1976). Until now, this structural type has been mainly reported for R_3In_5 and R_3Tl_5 compounds (R = lanthanide elements; Villars & Calvert, 1991). In the Er-Ga-Ge system investigated by us at 1173 K, $Er_3Ga_2Ge_3$ is in equilibrium with the Tm₃Ga₅-type compound $Er_3Ga_3Ge_2$ (Yatsenko *et al.*, 1983) and with the defect AlB₂-type compound $Er_{36}Ga_{17}Ge_{47}$. The Pu₃Pd₅ structure is closely related to the Tm₃Ga₅-type structure (Yatsenko *et al.*, 1983). The evolution of the structure as a function of the Ga content is not well understood.

Fig. 1. View of the asymmetric unit of Er₃Ga₂Ge₃. Displacement ellipsoids are shown at the 99% probability level.

The refinement of the occupancy factors of the Ga and Ge sites leads us to assume that the Ga5 and Ge6 sites are fully occupied by Ga and Ge atoms, respectively. The occupancy factor of the (Ge3,Ga4) site suggests a mixture of Ge and Ga atoms on this site. In spite of the close scattering factors of Ge and Ga atoms, the chemical formula deduced from the results of the refinements ($Er_{37.5}Ge_{34.9}Ga_{27.6}$) is in good agreement with that measured by microprobe analysis.

Experimental

Crystals of the title compound were extracted from an $Er_{25}Ga_{20}Ge_{55}$ ingot annealed at 1173 K for one week. The microprobe analysis of the crystals gives the following composition: Er 37 (1), Ga 27 (1) and Ge 36 (1) atom%.

Crystal data

$Er_3Ga_{2.21}Ge_{2.79}$	Ag $K\alpha$ radiation
$M_r = 858.99$	$\lambda = 0.56090 \text{ Å}$
Orthorhombic	Cell parameters from 176
Стст	reflections
a = 9.2880(6) Å	$\theta = 0.64 - 23.58^{\circ}$
b = 7.4180(7) Å	$\mu = 32.069 \text{ mm}^{-1}$
c = 9.3830(4) Å	T = 293 (2) K
$V = 646.47 (8) \text{ Å}^3$	Parallelepiped
Z = 4	$0.08 \times 0.07 \times 0.07$ mm
$D_x = 8.826 \text{ Mg m}^{-3}$	Metallic grey
D_m not measured	

Data collection

Nonius KappaCCD diffrac-	3
tometer	
Oscillations scan	l
Absorption correction:	ť
empirical (SORTAV;	ŀ
Blessing, 1987)	k
$T_{\rm min} = 0.090, T_{\rm max} = 0.109$	l
3631 measured reflections	

423 independent reflections

1970

Refinement	
Refinement on F^2	Extinction correction:
$R[F^2 > 2\sigma(F^2)] = 0.020$	SHELXL97 (Sheldrick,
$wR(F^2) = 0.054$	1997 <i>a</i>)
S = 0.704	Extinction coefficient:
423 reflections	0.0055 (3)
32 parameters	Scattering factors from
$w = 1/[\sigma^2(F_c^2)]$	International Tables for
$(\Delta/\sigma)_{\rm max} = 0.045$	Crystallography (Vol. C)
$\Delta \rho_{\rm max} = 1.64 \ {\rm e} \ {\rm \AA}^{-3}$	
$\Delta \rho_{\rm min} = -1.63 \ {\rm e} \ {\rm \AA}^{-3}$	

 Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$U_{eo} = ($	$(1/3)\Sigma_i\Sigma_j$	$U^{ij}a^ia^j\mathbf{a}_i.\mathbf{a}_i$	
--------------	-------------------------	---	--

	x	у	z	$U_{\rm eq}$
Erl	0	0.65375 (9)	1/4	0.0097 (2)
Er2	0.19927 (5)	0	0	0.0105 (2)
Ge3†	0	0.0408 (2)	1/4	0.0059 (15)
Ga4‡	0	0.0408 (2)	1/4	0.041 (12)
Ga5	0	0.32084 (17)	0.44813 (12)	0.0117 (3)
Ge6	0.20266 (12)	0.29135 (17)	1/4	0.0119 (3)

 \ddagger Site occupancy = 0.787 (16). \ddagger Site occupancy = 0.213 (16).

Table 2. Selected bond lengths (Å)

2.8387 (11)	Ge3—Ge6 ^{\u}	2.6454 (17)
2.8387 (11)	Ge3—Ga5	2.7878 (18)
2.871 (2)	Ge3—Ga5`'	2.7878(18)
2.9443 (12)	Ge3—Er1**	2.871 (2)
2.9443 (12)	Ge3—Er2 ^x	3.0033 (4)
3.0910(13)	Ge3-Er2*vi	3.0033 (4)
3.0910 (13)	Ga5—Ge6 ^v "	2.6546 (12)
3.2817 (13)	Ga5—Ge6	2.6546 (12)
3.2817 (13)	Ga5—Ga5 ⁱ	2.831 (2)
2.9543 (8)	Ga5-Erl ¹	2.8387 (11)
2.9543 (8)	Ga5—Er2 ^{xv1}	3.0540 (10)
3.0033 (4)	Ga5—Er2 ^{vi}	3.0540 (10)
3.0033 (4)	Ga5—Er2 ^{xvii}	3.1313 (7)
3.0540 (10)	Ga5-Er2 ^{xviii}	3.1313 (7)
3.0540 (10)	Ge6Ga5 ^{vi}	2.6546 (12)
3.1313 (7)	Ge6—Er1 ^{x1x}	2.9443 (12)
3.1313 (7)	Ge6—Er2 ^{xvii}	2.9543 (8)
3.1897 (9)	Ge6—Er2 ^{vin}	2.9543 (8)
3.1897 (9)	Ge6-Er2 ^{vi}	3.1897 (9)
2.6454 (17)		
	2.8387 (11) 2.8387 (11) 2.871 (2) 2.9443 (12) 2.9443 (12) 3.0910 (13) 3.0910 (13) 3.2817 (13) 2.9543 (8) 3.0033 (4) 3.0033 (4) 3.0540 (10) 3.0540 (10) 3.1313 (7) 3.1313 (7) 3.1897 (9) 3.1897 (9)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Symmetry codes: (i) -x, 1 - y, 1 - z; (ii) -x, 1 - y, $z - \frac{1}{2}$; (iii) x, 1 + y, z; (iv) $\frac{1}{2} - x$, $\frac{1}{2} + y$, z; (v) $x - \frac{1}{2}$, $\frac{1}{2} + y$, z; (vi) x, y, $\frac{1}{2} - z$; (vii) -x, y, z; (viii) $\frac{1}{2} - x$, $\frac{1}{2} - y$, -z; (ix) $\frac{1}{2} - x$, $y - \frac{1}{2}$, z; (x) -x, -y, -z; (xi) -x, -y, $z - \frac{1}{2}$; (xii) $\frac{1}{2} - x$, $\frac{1}{2} - y$, $z - \frac{1}{2}$; (xiii) $\frac{1}{2} + x$, $y - \frac{1}{2}$, $\frac{1}{2} - z$; (xiv) x, -y, -z; (xv) x, y - 1, z; (xvi) -x, -y, $\frac{1}{2} + z$; (xvii) $\frac{1}{2} - x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$; (xviii) $x - \frac{1}{2}$, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (xix) $\frac{1}{2} + x$, $y - \frac{1}{2}$, z.

In the final electron-density difference map, both the minimum $(-1.63 \text{ e} \text{ Å}^{-3} \text{ at } 0.5, 0.1456, 0.347)$ and the maximum $(1.64 \text{ e} \text{ Å}^{-3} \text{ at } 0.4378, 0.0552, 0.5)$ peaks occur approximately 0.93 Å from the heavy Er1 atom. They are due to the irregular crystal shape and the empirical absorption correction method (*SORTAV*; Blessing, 1987). The *SHELXL*97 (Sheldrick, 1997*a*) recommended weighting scheme (a = 0, b = 0) does not permit one to obtain a goodness-of-fit value close to 1.0. The low value of the least-squares goodness-of-fit is due to the data reduction procedure (*DENZO* and *SCALEPACK*; Otwinowski & Minor, 1997), which overestimates (by a factor of approximately 1.3) the standard deviation of the measured intensities.

Data collection: COLLECT (Nonius, 1998). Cell refinement: COLLECT. Data reduction: DENZO and SCALEPACK. Pro-

gram(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997b). Program(s) used to refine structure: *SHELXL*97. Molecular graphics: *ATOMS for Windows* (Dowty, 1995). Software used to prepare material for publication: *SHELXS*97.

We are grateful to Dr Claude Didierjean (Laboratoire de Cristallographie et Modelization des Materériaux Mineraux et Biologiques, Faculté des Sciences de Nancy I) for his help during the data reduction.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1251). Services for accessing these data are described at the back of the journal.

References

Blessing, R. H. (1987). Crystallogr. Rev. 1, 3-58.

- Cromer, D. T. (1976). Acta Cryst. B32, 1930-1932.
- Dowty, E. (1995). ATOMS for Windows. Version 3.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- Nonius (1998). COLLECT. Data Collection Software. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307-326. Sheldrick, G. M. (1997a). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen. Germany.

- Sheldrick, G. M. (1997b). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen. Germany.
- Villars, P. & Calvert, L. D. (1991). Pearson Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed., p. 281. ASM International.
- Yatsenko, S. P., Hladyshevshii, E. I., Tschuntonow, K. A., Yarmolyuk, Ya. P. & Hryn, Yu. N. (1983). J. Less Common Met. 91, 21-32.

Acta Cryst. (1999). C55, 1970-1972

The solid solution of composition K₂PdBr_{2.24}Cl_{1.76}

Hedi Omrani,^a Richard Welter^b and Rene Vangelisti^b

^aFaculté des Sciences, Département de Chimie, Monastir 5000, Tunisia, and ^bLaboratoire de Chimie du Solide Minéral, UMR 7555, Université Henri Poincaré Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre les Nancy CEDEX, France. E-mail: richard.welter@lcsm.u-nancy.fr

(Received 19 July 1999; accepted 14 September 1999)

Abstract

The structure of K₂PdBr_{2.24}Cl_{1.76}, dipotassium bromochloropalladate, an isotype of K₂PdCl₄ and K₂PdBr₄, has been determined in the centrosymmetric space group *P4/mmm*. The tetragonal cell contains one Pd atom. The $[PdX_4]^{2-}$ ions (X = Cl, Br) are square planar, with Pd— X bond lengths of 2.3934 (9) Å.